
©Anthony Steed 1999-2006, Jan Kautz 2007-2012

LINE DRAWING

2011 Introduction to Graphics
Lecture 8

Overview

¨  Line drawing is hard!
¨  Ideal lines and drawing them
¨  Bresenham’s algorithm

¤ Stages of optimisation

¨  Going Faster
¨  Going Faster Still

Ideal Lines

¨  From the equation of a
line

¨  Find a discretisation

()1
12

12
1 xx

xx
yyyy −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−

−
+=

Octants

¨  We will choose one case
(1st octant)
¤  Line gradient is > 0 and is < 1

¨  There are eight variations of
the following algorithms
¤  4 iterate over X
¤  4 iterate over Y

1st octant

(x2,y2)

(x1,y1)

In the 1st Octant

¨  We know that there is more than one pixel on every row (i.e.
X increases faster than y)

¨  Also Y increase as X increases

¨  Note that horizontal, vertical and 45 degree lines often
treated as special cases

Naïve Algorithm

 dx = x2-x1

 dy = y2 - y1

 for (x=x1;x<=x2;x++) {
 y = round(y1+(dy/dx)*(x-x1))
 setPixel(x,y)

}

¨  Problems
¤  one divide, one round, two adds, one multiply per pixel

First Speed Up - An Obvious Thing

¨  Obviously the gradient does not change each time
through the loop

¨  Calculate m = dy/dx = (y2-y1)/(x2-x1) once

¨  Note that
¤ y(x) = y1+m*(x-x1)
¤ y(x+1) = y1+m*((x+1)-x1)
¤ y(x+1)-y(x) = m

Step 0

 dx = x2-x1

 dy = y2 - y1

 for (x=x1;x<=x2;x++) {

 y = round(y1+(dy/dx)*
 (x-x1))

 setPixel(x,y)
}

Step 1: Convert to
incremental algorithm

 dx = x2-x1

 dy = y2 - y1

 y = y1

 for (x=x1;x<=x2;x++) {
 y += dy/dx
 setPixel(x,round(y))

}

Step 1 Step 2: Replace round

 dx = x2-x1

 dy = y2 - y1

 y = y1

 for (x=x1;x<=x2;x++) {
 y += dy/dx
 setPixel(x,(int)(y+0.5))

}

 dx = x2-x1

 dy = y2 - y1

 y = y1

 for (x=x1;x<=x2;x++) {
 y += dy/dx
 setPixel(x,round(y))

}

Step 2 Step 3: Split y into an
integer and fraction part

 dx = x2-x1

 dy = y2 - y1

 y = y1

 for (x=x1;x<=x2;x++) {
 y += dy/dx
 setPixel(x,(int)(y+0.5))

}

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = 0.0

 for (x=x1;x<=x2;x++) {

 yf+= dy/dx
 if (yf > 0.5) {
 yi++
 yf--
 }
 setPixel(x,yi)

}

Note yf is always in range –0.5 to 0.5

Step 3 Step 4: Shift yf by 0.5

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = 0.0

 for (x=x1;x<=x2;x++) {

 yf += dy/dx
 if (yf > 0.5) {
 yi++
 yf--
 }
 setPixel(x,yi)

}

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -0.5

 for (x=x1;x<=x2;x++) {

 yf+= dy/dx
 if (yf > 0.0) {
 yi++
 yf--
 }
 setPixel(x,yi)

}

Step 4 Step 5: Multiply yf
through by 2dx

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -0.5

 for (x=x1;x<=x2;x++) {

 yf += dy/dx
 if (yf > 0.0) {
 yi++
 yf--
 }
 setPixel(x,yi)

}

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -dx

 for (x=x1;x<=x2;x++) {

 yf += 2dy
 if (yf > 0) {
 yi++
 yf += -2dx
 }
 setPixel(x,yi)

}

We now have all integer arithmetic

Step 5 Step 6: Re-arrange if

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -dx
 for (x=x1;x<=x2;x++) {

 if (yf > 0) {
 yi++
 yf += 2dy -2dx
 } else {
 yf += 2dy
 }
 setPixel(x,yi)

}

This has one less add statement

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -dx

 for (x=x1;x<=x2;x++) {

 yf += 2dy
 if (yf > 0) {
 yi++
 yf += -2dx
 }
 setPixel(x,yi)

}

Step 6 Step 7: Make all
constants

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -dx
 e = 2dy – 2dx

 f = 2dy
 for (x=x1;x<=x2;x++) {

 if (yf > 0) {
 yi++
 yf +=e
 } else {
 yf += f
 }
 setPixel(x,yi)

} Reduced to one if, 1 or 2 adds

 dx = x2-x1 dy = y2 - y1

 yi = y1 yf = -dx
 for (x=x1;x<=x2;x++) {

 if (yf > 0) {
 yi++
 yf += 2dy -2dx
 } else {
 yf += 2dy
 }
 setPixel(x,yi)

}

What have we got

¨  Only integer arithmetic
¨  One if, 1/2 adds per pixel

¤ One hidden if in the loop

¨  Can we get faster than that?

Faster - Mid-Point Drawing

¨  Note that lines are symmetric
¨  (a,b) to (c,d) should generate the same pixels. Thus the

lines are symmetric about the mid-point
¨  Implies...

¤ draw outwards from mid-point in both directions

¨  Is almost twice as fast (one extra add gives an extra
pixel)

Faster - Two-Step

¨  Note we considered whether to choose between

¨  What if we choose between the four cases

¨  Almost twice the speed again

Questions

¨  How would you draw thick lines?

¨  Will Bresenham really result in a big speed-up (think
setPixel())?

¨  How would you do anti-aliasing?

Summary

¨  Bresenham’s algorithm uses only integer arithmetic and
2/3 ops per pixel
¤  Ideal for hardware implementation

¨  Can be improved almost four-fold in speed, with added
complexity
¤ Good for software implementations
¤ Pixel scanning is usually not the bottleneck these days so

wouldn’t be cast into hardware

