LINE DRAWING

2011 Introduction to Graphics Lecłure 8

Overview

\square Line drawing is hard!
\square Ideal lines and drawing them
\square Bresenham's algorithm
\square Stages of optimisation
\square Going Faster
\square Going Faster Still

/

Ideal Lines

\square From the equation of a line

$$
y=y_{1}+\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
$$

Find a discretisation

$\times 2, y 2$

Octants

\square We will choose one case (${ }^{\text {st }}$ octant)
\square Line gradient is >0 and is <1
\square There are eight variations of the following algorithms
$\square 4$ iterate over X
$\square 4$ iterate over Y

In the $1^{\text {st }}$ Octant

\square We know that there is more than one pixel on every row (i.e. X increases faster than y)
\square Also Y increase as X increases

\square Note that horizontal, vertical and 45 degree lines often treated as special cases

Naïve Algorithm

```
\(d x=x_{2}-x_{1}\)
\(d y=y_{2}-y_{1}\)
for ( \(x=x_{1} ; x<=x_{2} ; x++\) ) \{
    \(y=\operatorname{round}\left(y 1+(d y / d x)^{*}\left(x-x_{1}\right)\right)\)
    setPixel( \(x, y\) )
\}
```

\square Problems
\square one divide, one round, two adds, one multiply per pixel

First Speed Up - An Obvious Thing

\square Obviously the gradient does not change each time through the loop
\square Calculate $m=d y / d x=(y 2-y 1) /(x 2-x 1)$ once
\square Note that
$\square y(x)=y 1+m *(x-x 1)$
$\square y(x+1)=y 1+m^{*}((x+1)-x 1)$
$\square y(x+1)-y(x)=m$

Step 0

Step 1: Convert to

 incremental algorithm$$
\begin{array}{ll}
d x=x_{2}-x_{1} & d x=x_{2}-x_{1} \\
d y=y_{2}-y_{1} & d y=y_{2}-y_{1} \\
\text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ & y=y_{1} \\
y=\operatorname{round}\left(y 1+(d y / d x)^{*}\right. & \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
\left.\left(x-x_{1}\right)\right) & y+=d y / d x \\
\operatorname{setPixel}(x, y) & \operatorname{setPixel}(x, \operatorname{round}(y)) \\
\} & \}
\end{array}
$$

Step 1

Step 2: Replace round

$$
\begin{aligned}
& d x=x_{2}-x_{1} \\
& d y=y_{2}-y_{1} \\
& y=y_{1} \\
& \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
& \quad y+=d y / d x \\
& \quad \operatorname{setPixel}(x, \operatorname{round}(y)) \\
& \}
\end{aligned}
$$

$$
\begin{aligned}
& d x=x_{2}-x_{1} \\
& d y=y_{2}-y_{1} \\
& y=y_{1} \\
& \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
& \quad y+=d y / d x \\
& \quad \operatorname{setPixel}(x,(i n t)(y+0.5)) \\
& \}
\end{aligned}
$$

Step 2

Step 3: split y into an integer and fraction part

$$
\begin{array}{ll}
d x=x_{2}-x_{1} & d x=x_{2}-x_{1} d y=y_{2}-y_{1} \\
d y=y_{2}-y_{1} & y_{i}=y_{1} y_{f}=0.0 \\
y=y_{1} & \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
\text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ & y_{f}+=d y / d x \\
y+=d y / d x & \text { if }\left(y_{f}>0.5\right)\{ \\
\quad \operatorname{setPixel}(x,(i n t)(y+0.5)) & y_{i}++ \\
\} & \\
& y_{f}-- \\
& \}
\end{array}
$$

Note y_{f} is always in range -0.5 to 0.5

Step 3

Step 4: shift y_{f} by 0.5

$$
\begin{aligned}
& d x=x_{2}-x_{1} \quad d y=y_{2}-y_{1} \\
& y_{i}=y_{1} \quad y_{f}=0.0 \\
& \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
& \quad y_{f}+=d y / d x \\
& \text { if }\left(y_{f}>0.5\right)\{ \\
& y_{i}++ \\
& y_{f}-- \\
& \} \\
& \text { setPixel }\left(x, y_{i}\right) \\
& \}
\end{aligned}
$$

Step 4

Step 5: Multiply y_{f}

 through by 2dx$$
\begin{array}{ll}
d x=x_{2}-x_{1} d y=y_{2}-y_{1} & d x=x_{2}-x_{1} d y=y_{2}-y_{1} \\
y_{i}=y_{1} \quad y_{f}=-0.5 & y_{i}=y_{1} \quad y_{f}=-d x \\
\text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ & \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
y_{f}+=d y / d x & y_{f}+=2 d y \\
\begin{array}{ll}
\text { if }\left(y_{f}>0.0\right)\{ & \text { if }\left(y_{f}>0\right)\{ \\
y_{i}++ & y_{i}++ \\
y_{f}-- & y_{f}+=-2 d x \\
\} & \}
\end{array} \\
\begin{array}{ll}
\operatorname{setPixel}\left(x, y_{i}\right) & \text { setPixel }\left(x, y_{i}\right)
\end{array} \\
\} & \}
\end{array}
$$

Step 5

Step 6: Re-arrange if

$$
\left.\begin{array}{l}
d x=x_{2}-x_{1} \quad d y=y_{2}-y_{1} \\
y_{i}=y_{1} \quad y_{f}=-d x \\
\text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
\quad y_{f}+=2 d y \\
\text { if }\left(y_{f}>0\right)\{ \\
y_{i}++ \\
y_{f}+=-2 d x \\
\} \\
\text { setPixel }\left(x, y_{i}\right)
\end{array}\right\}
$$

$$
\begin{aligned}
& d x=x_{2}-x_{1} \quad d y=y_{2}-y_{1} \\
& y_{i}=y_{1} \quad y_{f}=-d x \\
& \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
& \text { if }\left(y_{f}>0\right)\{ \\
& y_{i}++ \\
& y_{f}+=2 d y-2 d x \\
& \} \text { else }\{ \\
& y_{f}+=2 d y \\
& \}
\end{aligned} \begin{aligned}
& \text { setPixel }\left(x, y_{i}\right) \\
& \}
\end{aligned}
$$

This has one less add statement

Step 6

Step 7: Make all constants

$$
\begin{array}{ll}
d x=x_{2}-x_{1} d y=y_{2}-y_{1} & d x=x_{2}-x_{1} d y=y_{2}-y_{1} \\
y_{i}=y_{1} \quad y_{f}=-d x & y_{i}=y_{1} \quad y_{f}=-d x \\
\text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ & e=2 d y-2 d x \\
\text { if }\left(y_{f}>0\right)\{ & f=2 d y \\
y_{i}++ & \text { for }\left(x=x_{1} ; x<=x_{2} ; x++\right)\{ \\
y_{f}+=2 d y-2 d x & \text { if }\left(y_{f}>0\right)\{ \\
\} \text { else }\{ & y_{i}++ \\
y_{f}+=2 d y & y_{f}+=e \\
\} & \} \text { else }\{ \\
\text { setPixel }\left(x, y_{i}\right) & y_{f}+=f \\
\} & \}
\end{array}
$$

What have we got

\square Only integer arithmetic
\square One if, $1 / 2$ adds per pixel
\square One hidden if in the loop

Can we get faster than that?

Faster - Mid-Point Drawing

\square Note that lines are symmetric
$\square(a, b)$ to (c, d) should generate the same pixels. Thus the lines are symmetric about the mid-point
\square Implies...
\square draw outwards from mid-point in both directions
\square Is almost twice as fast (one extra add gives an extra pixel)

Faster - Two-Step

\square Note we considered whether to choose between

\square What if we choose between the four cases

\square Almost twice the speed again

Questions

\square How would you draw thick lines?
\square Will Bresenham really result in a big speed-up (think setPixel())?
\square How would you do anti-aliasing?

Summary

\square Bresenham's algorithm uses only integer arithmetic and 2/3 ops per pixel

- Ideal for hardware implementation
\square Can be improved almost four-fold in speed, with added complexity
\square Good for software implementations
\square Pixel scanning is usually not the bottleneck these days so wouldn't be cast into hardware

